Irrigation Water Conservation Strategies for Limited Resource Farmers

Leonard Githinji, Ph.D.
Irrigation Water Conservation Strategies for Limited Resource Farmers

Introduction
Irrigation Water Conservation Strategies for Limited Resource Farmers

Introduction Cont.

- Only 2.5% of water on earth is freshwater.
- 2% is in the form of ice!
- Only ~0.5% of water on earth is available freshwater
Irrigation Water Conservation Strategies for Limited Resource Farmers

Water Conservation Strategies

- Precision irrigation,
- Selecting drought resistant crops,
- Making use of the available recycled water,
- Decreasing evaporation e.g. by use of plastic mulch,
- Decreasing soil drainage by using soil amendments,
- Increasing irrigation efficiency or irrigation scheduling.
Irrigation Water Conservation Strategies for Limited Resource Farmers

Irrigation systems

- To irrigate effectively, the right amount of water has to reach the right place at the right time.

- Different irrigation methods will supply different irrigation rates.

- Generally gravity systems supply more water than sprinkler and micro-irrigation systems.
Irrigation Water Conservation Strategies for Limited Resource Farmers

Irrigation Systems Cont.

<table>
<thead>
<tr>
<th>System</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface (Gravity)</td>
<td>Flood</td>
<td>Water is diverted from ditches to fields or pastures</td>
</tr>
<tr>
<td></td>
<td>Furrow</td>
<td>Water is channelled down furrows for row crops or fruit trees</td>
</tr>
<tr>
<td></td>
<td>Border</td>
<td>Water is applied to sloping strips of fields bordered by ridges</td>
</tr>
<tr>
<td></td>
<td>Surge</td>
<td>Valves control delivery of water to fields in intermittent surges</td>
</tr>
<tr>
<td>Sprinkler (Pressurized)</td>
<td>Pivot & linear systems</td>
<td>High pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low pressure</td>
</tr>
<tr>
<td></td>
<td>Side rolls</td>
<td>Mobile pipelines deliver water across fields using sprinklers</td>
</tr>
<tr>
<td></td>
<td>Solid set</td>
<td>Pipes placed on fields deliver water from raised sprinkler heads</td>
</tr>
<tr>
<td>Micro-irrigation (Pressurized)</td>
<td>Surface</td>
<td>Emitter along pipes or hoses deliver water directly to the soil surface</td>
</tr>
<tr>
<td></td>
<td>Sub-surface</td>
<td>Emitter along pipes or hoses deliver water below the soil surface</td>
</tr>
<tr>
<td></td>
<td>Micro-sprinklers</td>
<td>Emitter on short risers or suspended by drop tubes sprinkle or spray water above the soil surface</td>
</tr>
</tbody>
</table>
Irrigation Water Conservation Strategies for Limited Resource Farmers

Irrigation Scheduling

What is irrigation scheduling?

- Irrigation scheduling is a tool for preventing the over-application of water while optimizing crop growth.

- Many producers know how long it takes to irrigate fields and avoid crop stress during average conditions.

- However, with erratic rainfall, it becomes difficult to apply enough water to fill the effective root zone without unnecessary deep percolation or runoff.
Irrigation Water Conservation Strategies for Limited Resource Farmers

Why schedule irrigation?

- Irrigation scheduling maximizes irrigation efficiency, hence saving water.
- Irrigation scheduling saves energy.
- Another additional benefit of irrigation scheduling is improved environmental quality by minimizing leaching and salinization.
Irrigation Water Conservation Strategies for Limited Resource Farmers

How do I schedule irrigation?

- At the start of the season, producers should plan a strategy that encompasses decisions about when and where to irrigate and how much water to apply.

- The strategy should be based on a good understanding of crop water use.

- There are three popular irrigation scheduling methods: i) ET-based, ii) Soil based and iii) Crop based
Irrigation Water Conservation Strategies for Limited Resource Farmers

ET-based irrigation scheduling method

Terminologies:

- Evapotranspiration (ET)

 - ET is the loss of water from a vegetative surface through the combined processes of plant transpiration and soil evaporation.

 - ET is equivalent to and frequently referred to as consumptive use.
Terminologies: Cont.

- Reference Evapotranspiration (ETo)
 - ETo is an estimate of the water used by a well-watered reference crop (grass cover).

- Crop Coefficient (K_c)
 - K_c is a correction factor called crop coefficient and is required to convert ETo to ET for a specific crop.
 - Hence, $ET = ETO \times K_c$
ET-based irrigation scheduling methods:

- "Smart" irrigation scheduling controllers:
 - Consist of irrigation scheduling devices that use weather data, site, crop and irrigation system characteristics to schedule irrigation.
 - If programmed properly, they are a convenient and require minimum labor and maintenance.
 - But cost may be prohibitive (> $1,000).
Irrigation Water Conservation Strategies for Limited Resource Farmers

Brands of smart ET-based irrigation scheduling controllers

<table>
<thead>
<tr>
<th>ET-based Irrigation scheduling controllers</th>
<th>Subscriptions*</th>
<th>Mode of operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toro Intelli-sense</td>
<td>Yes</td>
<td>Remote weather station</td>
</tr>
<tr>
<td>Rainbird ET Manger</td>
<td>Yes</td>
<td>Remote weather station</td>
</tr>
<tr>
<td>Weathermatic Smartline</td>
<td>No</td>
<td>Onsite sensors</td>
</tr>
<tr>
<td>Hunter ET system</td>
<td>No</td>
<td>Onsite sensors</td>
</tr>
<tr>
<td>ET Water Smart</td>
<td>Yes</td>
<td>Remote weather station</td>
</tr>
<tr>
<td>Irritrol Systems</td>
<td>Yes</td>
<td>Remote weather station</td>
</tr>
<tr>
<td>Aqua Conserve</td>
<td>No</td>
<td>Onsite sensors/Historical</td>
</tr>
</tbody>
</table>

* Monthly subscription to the weather data service provider and ranges from $45 to 50.
Irrigation Water Conservation Strategies for Limited Resource Farmers

ET-based irrigation scheduling methods: Cont.

- Do-it-yourself ET-based irrigation scheduling

 - The approach is based on three steps:
 - accessing daily or monthly ET$_o$ data from the nearest weather station or from a public weather network database (e.g. Alabama Masonet Weather Data)
 - obtaining K_c for the crop of interest, and
 - determining ET.
Irrigation Water Conservation Strategies for Limited Resource Farmers

Soil based irrigation scheduling method

Soil Moisture Terminologies:

- The following terms are commonly used to describe how soil moisture is quantified.
 - Soil water content
 - Soil water potential or soil moisture tension
 - Plant available water (PAW)
Soil Moisture Terminologies: Cont.

Soil water content:

- This is a measurement of the amount of water in a known amount of soil;

- It can be expressed as % water by weight or volume of soil, or inches of water per acre of soil.

- Example: when you irrigate 1 acre-inch you are supplying 27,000 gallons of water.
Soil Moisture Terminologies: Cont.

Soil water potential:

- This is a measurement of how tightly water is held by the soil.
- It is expressed in units of pressure called bars.
- The drier the soil, the tighter the water is held and the harder a plant must work to draw water from the soil.
Soil Moisture Terminologies: Cont.

- **Field capacity:**
 - This is soil water content after gravity has removed any freely draining, excess water.

- **Permanent wilting point:**
 - This is soil water content at which most plants can not recover from wilting.
Irrigation Water Conservation Strategies for Limited Resource Farmers

- Soil Moisture Terminologies: Cont.

- Plant available water (PAW):
 - This is the amount of water in the soil between the soil's field capacity and its permanent wilting point.
 - It is expressed as inches of available water per foot of soil.
Irrigation Water Conservation Strategies for Limited Resource Farmers

Soil based irrigation scheduling method

- The method is based on soil water (or moisture) measurement.

- There are several soil moisture tools and devices available on the market.

- Each of these devices has distinct advantages and limitations.
Soil moisture measurement methods:

- **Tensiometers:**
 - Tensiometers are devices that measure soil water potential.
 - They are air-tight, water-filled tubes with a porous cup and a vacuum gauge.
 - Water moves between the porous cup and surrounding soil.
Soil moisture measurement methods: Cont.

- **Tensiometers:**
 - Tension registers on the gauge at indicating water availability in the soil.
 - Tensiometers operate best at field capacity.
 - Average cost for a tensiometer is $50-$100
Soil moisture measurement methods: Cont.

- **Gypsum blocks:**
 - They measure soil water potential.
 - They consist of two electrodes embedded in a block of porous gypsum.
 - Electrodes are connected to a portable meter resistance where the readings are recorded.
Irrigation Water Conservation Strategies for Limited Resource Farmers

Soil moisture measurement methods: Cont.

- **Gypsum blocks:**
 - Gypsum blocks operate over a wider range of soil moisture tensions than tensiometers.
 - But they tend to deteriorate over time and may even need to be replaced yearly.
 - Cost: $1.25 for block and $300 for meter.
Soil moisture measurement methods: Cont.

- **Time Domain Reflectometry (TDR):**
 - TDR measures the soil water content.
 - Measures signal reflection.
 - Wet soil returns the signal more slowly than dry soil.
Irrigation Water Conservation Strategies for Limited Resource Farmers

Soil moisture measurement methods: Cont.

- **Time Domain Reflectometry (TDR):**

 - TDR gives fast, accurate readings of soil water content, and requires little to no maintenance.
 - But it may require more work in interpreting data and calibration.
 - The cost ranges from $100 to $500.
Irrigation Water Conservation Strategies for Limited Resource Farmers

Plant based irrigation scheduling method

- Plants use many different responses to keep their water supply and demand in balance.

- Hence, most plant-based irrigation scheduling methods are based on these direct measurements of one or more of these responses.
Irrigation Water Conservation Strategies for Limited Resource Farmers

Plant based irrigation scheduling method

- Direct methods: Plant water status
 - wilting
 - leaf water potential

- Indirect methods: water status
 - fruit or stem diameter
 - leaf thickness
 - xylem cavitation
Conclusion about irrigation scheduling methods

- For successful irrigation scheduling, you need to know:
 - your soil,
 - your soil-water status,
 - your crops, and
 - your crop stress status as determined by the weather.