Contact Information: Dr. Mahesh Hosur, Head; hosur@mytu.tuskegee.edu; Ph.: +1 (334) 724-4220
Ms. Felicia Jenkins, Program Coordinator; fjenkins@mytu.tuskegee.edu; Ph.: +1 (334) 727-8802

Degrees Offered: Master of Science (M.S.) in Materials Science and Engineering, Regular Thesis

Tuskegee University
College of Engineering
Master of Science (MS) in Materials Science and Engineering

Admission Requirements:

Applicants must have completed the B.S degree from a department of approved standing and granted by an accredited college or university in any of the following areas to be considered for the Master’s program in Materials Science and Engineering:

- Biology
- Chemistry
- Engineering
- Mathematics
- Physics

- Prerequisite academic work should provide evidence that the application shall be able to pursue the graduate course effectively
- Applicants must also have a cumulative GPA of 3.0 or better.
- The minimum acceptable combined GRE score is 1000 (old) or 300 (new).
- Official Transcript from all colleges/universities attended (International Students must have transcripts translated through World Education Services -WES)
- Completed Application along with the required amount of application fees
- 3 Letters of Recommendation
- Statement of Purpose
- GRE Scores
- Financial Affidavit (International Students –only)
- Test of English as Foreign Language (TOEFL) Scores (International students only).

Graduation Requirements:
Core Courses: 12 credits
Elective Courses: 12 Credits
Thesis: 6 credits
Admission to Candidacy
Passing of the Final Oral Examination

Advisory Committee:
During the first semester of his/her study in the Master of Science program, the student and his/her Major Professor must recommend to the Head of the Department for approval, the student’s Advisory Committee consisting of a minimum of four members including the Major Professor and the Head of the Department. The Advisory Committee shall also serve as the Examination Committee.

Core Courses (12 credits): Required for All Students in the Master’s program
MSEG 0516: Advanced Strength of Materials – 3 Credits
Elective Courses (12 credits): Determined by Student’s Major Professor
Elective courses may be any graduate level courses offered at Tuskegee University or elsewhere. Approval of the Major Professor is necessary for a student to sign up for electives.

Transfer Credits
The student’s Advisory Committee may recommend transfer credits for up to 9 hours for graduate courses taken by the student at Tuskegee University as part of another graduate program or at any other institution. Transfer credits may be recommended under both core and elective categories.

Admission to Candidacy
Immediately after completing 9 credits of course work at Tuskegee University, the student must submit to the Dean of Graduate Studies, a completed application for the Candidacy for the degree.

Seminars
A student pursuing the Master of Science degree in Materials Science and Engineering must present at least two seminars. The first seminar shall be the presentation of the student’s research proposal of the Master’s thesis. The second or the final seminar shall be his/her Final Oral Examination for the degree. The student is also required to participate in all seminars arranged by the department.

Thesis
The final draft of the thesis must be filed with the student's Advisory Committee at least 30 days before the date listed in the university calendar for final copies to be submitted during the semester in which the student expects to graduate. The student must present to the Dean of Graduate Programs a “Preliminary Approval Sheet” (PAS) bearing the signature of the Major Professor before the final oral examination may be scheduled and before copies of the thesis/dissertation are distributed to members of the Examining Committee.

After the “Preliminary Approval Sheet” has been signed, it should be submitted to the Dean of Graduate Programs before the final examination is scheduled and before the final draft of the thesis/dissertation is prepared for final approval. Approval of the thesis/dissertation in its final form rests with the Examining Committee.

Research assistantships and fellowships are available for students admitted to the program. Continuation of the financial support depends on student’s performance in course work and research, and availability of funds.

<table>
<thead>
<tr>
<th>List of Core Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSEG 516</td>
</tr>
<tr>
<td>MSEG 518</td>
</tr>
<tr>
<td>MSEG 521</td>
</tr>
<tr>
<td>MATH 0561</td>
</tr>
<tr>
<td>MSEG 0700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>List of Elective Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSEG 0601</td>
</tr>
</tbody>
</table>
undergraduate physics and chemistry courses are extended using the concepts of quantum mechanics to relate the properties of materials to their internal structure and external environment. Optical, electrical, thermal and magnetic properties of metals, semiconductors and insulators will be covered.

MSEG 0603 POLYMER PHYSICS. CR. 3. Principles of polymer physics will be taught. Emphasis is placed on classification of polymers, molecular sizes, polymer blends, morphology, time-independent elasticity, linear viscoelasticity and yield, and yield and fracture polymers.

MSEG 0604 MATERIALS PROPERTIES AND CHARACTERIZATION. CR. 3. A multidisciplinary course offering a practical hands-on experience with various analytical equipment and analysis of advanced composite materials including nanomaterials. Focus on sample preparation, principles and applications of various microscopy, thermal and mechanical methods. Covered topics include AFM, SEM, TEM, EDX, X-ray, TGA, DSC, DMA, TMA, tensile, compression and flexure tests.

MSEG 0605 RESEARCH ETHICS. CR. 1. The course will provide students an understanding of ethical issues in scientific research. Moral complexities in the engineering profession will be highlighted. Case studies will be used to illustrate how to analyze and resolve identified ethical issues.

MSEG 0606 LITERATURE SEARCH AND TECHNICAL WRITING. CR. 2. To prepare the MSEG Ph.D. and MS candidates for writing professional papers, making presentations, and preparing theses/dissertations. To accomplish this objective, the literature related to material science and engineering is surveyed. The tools for searching the material science and engineering literature are explored. The instructors will critically analyze abstracts, formal papers and theses/dissertations related writings prepared by the students.

MSEG 0607 PROPOSAL DEVELOPMENT. CR. 3. In this course emphasis will be placed on technical research proposal writing. Focus will be placed on solicitation search, critical review of the literature on the research subject, development of the proposed research idea, highlights of the proposed research innovation, development of research work plans and tasks, projected outcome and deliverables, and cost proposal development.

MSEG 0610 Advanced Materials Science and Engineering. CR. 3. This course introduces students coming from various disciplines to materials science and engineering. Different types of advanced materials, modern material needs, processing techniques, properties and application will be discussed. Material degradation upon exposure to various environments, proper selection of material and design consideration, economic and recycling issues of materials will be taught. Prerequisite: MENG 0318: Materials Engineering

MSEG 0611 MOLECULAR MODELING OF POLYMERS AND NANOCOMPOSITES. CR. 3. To introduce students to the fundamentals of molecular modeling and to put that knowledge to use in a class project. Mini-projects and homework sets will be assigned as needed. Mini-projects require computer calculations. Homework sets will be drawn from the text and from literature sources.

MSEG 0612 NANOSCALE SCIENCE AND ENGINEERING. CR. 3. This course aims to introduce students to nanoscale materials science and technology. It will cover topics such as nanoscale material synthesis, properties and applications. It will also emphasize the theory, modeling and simulation approaches used to understand the synthesis mechanisms and morphological changes in nanoscale materials systems, as well as the properties of materials at the nanoscale. The course will have a balanced materials science (main thrust of the course) mechanics, physics and chemistry technology flavor. Prerequisites: graduate standing or senior undergraduate

MSEG 0613 MECHANICAL BEHAVIOR OF MATERIALS. CR. 3. Principles of mechanical behavior of engineering materials will be taught by integrating aspects of materials science and solid mechanics. Emphasis is placed on structure and deformation in materials, mechanical testing, stress-strain relationships, complex and principal states of stress and strain yielding and fracture of cracked bodies. Prerequisite: MENG 0316

MSEG 0614 Materials and Environment. CR.3. The impact of the environment on polymeric, metallic and ceramic materials is examined. Mechanisms of interaction between materials and the environment are considered. The effects of heat, moisture, UV light, ozone, radiation, acid rain and corrosive environments are included in this study of the effect of the environment on materials. The impact of materials on the environment is surveyed. Case studies and the current literature will be utilized throughout.

MSEG 0616 Biomaterials. Cr. 3. Principles and applications of natural and synthetic biomaterials for medical applications. Methods of analysis, including microscopy, spectroscopy and mechanical strength analysis will be introduced.

MSEG 0622 KINETICS OF MATERIALS. CR. 3. Activated rate theory, solid-state diffusion, atomic theory, solid-state diffusion, atomic theory of diffusion kirkendall effect, Darken equations, high diffusivity phenomenon and chemical reaction kinetics, pertinent to transformations.

MSEG 0623 THEORY OF ELASTICITY. CR. 3. Stress-Strain relations, strain energy, general methods of elasticity, reciprocal theorems, energy methods and variational principles. The Rayleigh-Ritz and Galerkin methods.
MSEG 0624 POLYMER CHEMISTRY. CR. 3. A survey course on polymeric materials. Areas covered are the synthesis and reactions of polymers, thermodynamics and kinetics of polymerization, the physical characterization of polymers and the fabrication, testing and uses of polymers. These topics are integrated into both the lecture and the laboratory. Prerequisites: Organic Chemistry 321 & 323; Physical Chemistry 402 & 404.

MSEG 0625 THERMODYNAMICS OF MATERIALS SYSTEMS. CR. 3. The laws of thermodynamics applied to the stability of material phases, crystal imperfections, solubility, oxidation, surface and interface energy, and transformation. Application of the laws of Thermodynamics to Material Systems: chemical reactions, phase equilibria and transformations, oxidation, theoretical phase diagram generation and non-ideal solution theory. (Prerequisite: MSEG 0625)

MSEG 0627 FRACTURE MECHANICS. CR. 3. Basic principles and applications of fracture mechanics by integrating aspects of materials science and solid mechanics. Emphasis is placed on linear elastic and nonlinear elastic-plastic fracture mechanics theories; practical knowledge of fracture toughness evaluation of metals, polymer and ceramic composites; fatigue crack propagation. Prerequisite: MENG 0416.

MSEG 0628 FINITE ELEMENT METHOD. CR. 3. Principles of finite element analysis, variation principles, displacement polynomials and shape functions, element family, application to 2D and 3D continuum problems, application to thermal and fluid flow problems, computer program development. Prerequisites: Graduate standing and instructor’s approval.

MSEG 0629 MICROSTRUCTURAL ANALYSIS OF MATERIALS. CR. 3. To provide an integrated treatment of the science of microstructural analysis which emphasizes the interaction of the specimen with the electron beam used to probe the microstructure. The three main aspects of microstructural morphology, phase identification, crystallography, and microanalysis of the chemical composition will be covered. Following an introduction, the principal methods of characterization, e.g., diffraction analysis, scanning and transmission electron microscopy, and chemical microanalytical techniques will be taught. Some laboratory assignments will also be incorporated in this course. (Prerequisite: MSEG 0629)

MSEG 0641 COMPOSITE MATERIALS. CR. 3. Introduction to composite materials; fibers, matrix and interface; mechanical and chemical aspects; design, chemical synthesis, manufacturing and processing methods; mechanical testing methods; understanding of failure mechanisms based on static, fatigue, impact and other properties; microstructural consideration. Prerequisite: MENG 0318.

MSEG 0642 MECHANICS OF COMPOSITES. CR. 3. Classification and characterization of composite materials; mechanical behavior of composite materials; stress-strain relation for anisotropic materials; invariant properties of an orthotropic lamina; strength concepts and biaxial strength theories; classical lamination theory and theory of an anisotropic elastic continuum; equations of laminated anisotropic plates. Prerequisite: MSEG 0641.

MSEG 0643 ELECTRONIC MATERIALS PROCESSING I. CR. 3. Theory and current technology for Si integrated circuit fabrication processes, including crystal growth, wafer preparation, epitaxy, oxidation, photolithography, diffusion, ion implantation, thin film deposition by chemical vapor deposition (CVD), etching and metallization, process simulation.

MSEG 0644 ELECTRONIC MATERIALS PROCESSING II. CR. 3. Materials processing for III—V compound semiconductor devices and integrated circuits. Materials requirements for high speed devices and process technology for the fabrication of these devices, self-aligned structures and integrated circuit processing, quantum well structures and their properties, processing of light emitting diodes and semiconductor lasers.

MSEG 0645 SYNTHESIS AND CHARACTERIZATION OF ELECTRONIC MATERIALS. CR. 3. Principles of materials growth and characterization for electronic and photonic materials. Bulk and epitaxial growth, chemical vapor deposition (DVD), plasma enhanced CVD (PECVD), Metalorganic CVD (MOCVD), molecular beam epitaxy (MBE), activated source MBE technologies, corresponding characterization techniques for evaluation of material quality, including theoretical basis for these techniques.

MSEG 0646 PROCESSING OF ADVANCED SEMICONDUCTOR DEVICE STRUCTURES. CR. 3. Processing and physics of operation of Si high power devices, SiC high-power and high-temperature devices, advances in GaN device structures. A comparative study of advanced semiconductor materials and their processing technologies.

MSEG 0647 SPECIAL TOPICS IN ADVANCED SEMICONDUCTOR DEVICES. CR. 3. Advanced bipolar devices.
and fabrication technology, heterojunction bipolar transistors, advanced/MOS devices the BICMOS process.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSEG 0690</td>
<td>SPECIAL TOPICS. Cr. 3. Advanced topics in materials science and engineering (prerequisite: Graduate standing and approval of major professor and instructor).</td>
</tr>
<tr>
<td>MSEG 0701</td>
<td>CONTINUOUS REGISTRATION. Cr. 0.</td>
</tr>
<tr>
<td>MSEG 0702</td>
<td>CANDIDATE FOR DEGREE. Cr. 0.</td>
</tr>
</tbody>
</table>

List key Graduate Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahesh Hosur, Ph.D.</td>
<td>334-724-4220</td>
<td>hosur@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Vijaya Rangari, Ph.D.</td>
<td>334-724-4875</td>
<td>rangariv@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Shaik Zainuddin, Ph.D.</td>
<td>334-724-4222</td>
<td>shaik.zainuddin@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Alfred Tcherbi-Narteh, Ph.D.</td>
<td>334-724-4475</td>
<td>atcherbi-narteh@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Hadiyah-Nicole Green, Ph.D.</td>
<td>334-724-4307</td>
<td>hgreen@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Heshmat Aglan, Ph.D.</td>
<td>334-727-8857</td>
<td>aglanh@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Michael Curry, Ph.D.</td>
<td>334-724-4489</td>
<td>mcurry@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Adriane Ludwick, Ph.D.</td>
<td>334-524-9855</td>
<td>aludwick@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Pradosh Ray, Ph.D.</td>
<td>334-727-8920</td>
<td>pkray@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Melissa Reeves, Ph.D.</td>
<td>334-727-8237</td>
<td>mreeves@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Temesgen Samuel, Ph.D.</td>
<td>334-724-4547/4671</td>
<td>tmsamuel@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Tamara Floyd-Smith, Ph.D.</td>
<td>334-727-8975</td>
<td>tfloyd@mytu.tuskegee.edu</td>
</tr>
<tr>
<td>Clayton, Yates, Ph.D.</td>
<td>334-727-8949</td>
<td>cyates@mytu.tuskegee.edu</td>
</tr>
</tbody>
</table>

* If available, please provide URL for Graduate Faculty member and nominees

Additional details that are not shown in this handout may be found in the Bulletin of the Department of Materials Science and Engineering, the TU’s Graduate Handbook and the website.