Dr. Ayman I. Sayegh

7) Washington, M. C., Raboin, S. J., Thompson, W., Larsen, C. J., Sayegh, A. I. Exenatide reduces food intake and activates the enteric nervous system of the gastrointestinal tract and the dorsal vagal complex of the hindbrain in the rat by a GLP-1 receptor. Brain Res. 2010, 1344: 124-33

18) Sayegh, A. I. The role of bombesin and bombesin-related peptides in the short-term control of food intake. Prog Mol Biol Transl Sci. 2013,114:343-70

Reviews:

Books:

Book Chapters:

1) Sayegh, A.I. and Herdt, T. Physiology of the Gastrointestinal Tract, Controls of Gastrointestinal Functions, Cunningham Textbook of Veterinary Physiology, Elsevier, June, 2012

2) Herdt, T. and Sayegh, A.I. Physiology of the Gastrointestinal Tract, Motility, Cunningham Textbook of Veterinary Physiology, Elsevier, June, 2012

Invited Presentations:

1) Sayegh Al. A possible role for the gastrointestinal tract in the short term control of food intake by cholecystokinin and gastrin releasing peptide. The NORC and Department of Nutritional Sciences Seminar Series, The University of Alabama at Birmingham School of Medicine, Oct 13th 2015
2) **Sayegh Al.** The gastrointestinal tract contains sites of action controlling meal size and intermeal interval length by cholecystokinin and gastrin releasing peptide. 14th International meeting of Peptide, Amino Acids and Proteins, Vienna, Sept 3-7th 2015

3) **Sayegh Al.** Cholecystokinin infused in the celiac artery and the cranial mesenteric artery reduces food intake and activates the enteric and dorsal vagal complex neurons. International Society for Autonomic Neuroscience Meeting, Milan, Sept 24-30th 2015

4) **Sayegh Al.** Roux-en-Y Gastric Bypass Alters the Site of Action and Augments the Feeding Responses Evoked by Gastrin Releasing Peptide in Rats. 15th Biomedical Research Symposium, Tuskegee University, September 18-19, 2014

5) **Sayegh Al.** The Gastrointestinal Tract Contains Sites of Action which Regulates Meal Size and Intermeal Interval by Cholecystokinin and Gastrin Releasing peptide. Nutrition and Health 2014. Taiyuan, China October 24-26, 2014

6) **Sayegh Al.** Roux-en-Y Gastric Bypass Alters the Site of Action and Augments the Feeding Responses Evoked by Gastrin Releasing Peptide in Rats. Obesity Week, Boston, MA, USA, November 1-7, 2014

7) **Sayegh Al.** The Tale of Two Peptides, Cholecystokinin and Gastrin Releasing Peptide in the fight Against Obesity. The American Association for Veterinary Anatomists Meeting, Athens, GA, July 11-13, 2013

8) **Sayegh Al.** In The Fight Against Obesity: Two Peptides, One Route. The Second International Conference on Gastroenterology and Urology, Chicago, IL, June 10-13, 2013

9) **Sayegh Al.** Washington, MC and Reeve, JR, Jr. The site of action that regulates prolongation of the intermeal interval by cholecystokinin in the rat is gastrointestinal. Swiss Winter Conference on Ingestive Behavior, St. Moritz, Switzerland Mar 3-8, 2013

10) **Sayegh Al.** The site of action for prolonging the intermeal interval by cholecystokinin, Department of Internal Medicine, Martin-Luther Hospital), Berlin, Germany, Mar 12, 2013

11) **Sayegh Al.** The short-term control of food intake: Possible anti-obesity targets. 12th Annual Biomedical Research Symposium, Tuskegee University, Tuskegee, AL, Sept 22 and Sept 23, 2011

12) **Sayegh Al.** Close Arterial Injections of Gastrin Releasing Peptide-29 Evokes Feeding Responses Consistent with a Role in the Short-Term Regulation of Food
Sayegh AI. An Intact Enteric Nervous System is Necessary for the Full Satiety Responses Evoked by Cholecystokinin. German Neurogastroenterology and Motility Society, Freising, Germany, Mar 4-6, 2011

Sayegh AI. The Role of the Enteric Nervous System in the Satiety Responses Evoked by Cholecystokinin. (Mini-symposium) (Invited by Dr. Miriam Goebel, Department of Internal Medicine, Martin-Luther Hospital), Berlin, Germany, Mar 11, 2011

Sayegh AI. Equine Anatomy Review. American Association of Equine Practitioners. Tuskegee Chapter. School of Veterinary Medicine, Tuskegee, AL Oct. 18, 2009 (Hosts: Ashley Craig and Grace Owens)

Sayegh AI. Control of food intake by the gastrointestinal tract, Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL Sept. 26, 2008 (Host, Dr. April D. Strader)

Sayegh AI. Role of gut peptides in the prolongation of the intermeal interval, Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL April 18, 2008 (Host, Dr. Mahmood Mansor, seminar series coordinator)

Sayegh AI. Overview of gastrointestinal physiology, SAVMA symposium, College of Veterinary Medicine, Tuskegee and Auburn Universities, Auburn, Conference Center, Auburn, AL, March 21, 2008

Sayegh AI. Control of food intake and the role of gut nerves in this control, College of Veterinary Medicine, Tuskegee and Auburn Universities, Auburn, Conference Center, Auburn, AL, March 21, 2008

Sayegh AI. Gut peptides and the intermeal interval, Department of pathology and Laboratory Medicine, Obesity Research Center and The Genome Center, School of Medicine, University of Cincinnati, OH, January 28, 2007 (Host: Dr. Patrick Tso)

Sayegh AI. The role of the enteric nervous system of the gut in the satiety actions of cholecystokinin, College of Veterinary Medicine and Graduate Studies, Department of Pharmacology, University of Tokyo, Japan, Oct 2, 2007 (Hosts: Professors Hiroshi Ozaki and Masatoshi Hori)

Sayegh AI. Gastrointestinal physiology and the role of the gut in satiety, Department of Nutritional Chemistry, University of Kyoto, Japan, Oct 3, 2007 (Hosts: Professor Fushiki Tohru and Dr. Yasuko Manabe)
23) Sayegh AI. Endogenous CCK reduces food intake and increases submucosal Fos-like immunoreactivity by acting on CCK₁ receptors, International Society for Autonomic Neuroscience, Kyoto, Japan, Oct 5-8, 2007

24) Sayegh AI. The physiology of the intermeal interval, Department of Human Nutrition, Kansas State University, Manhattan, KS, Oct 17, 2007 (Host: Dr. Tonatiuh Melgarejo)

25) Sayegh AI. Reduction of food intake by cholecystokinin: A possible role for the enteric nervous system of the gut, Keynote lecture, Sigma Xi Research society, Tuskegee, AL, April 28, 2007